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Abstract--A rigorous model for wave coalescence has been derived. The wave coalescence process 
has also been modelled by a Monte-Carlo technique. The results of the theories are in general 
in good agreement with the available experimental data. It had been noted that coalescence of 
two waves was accompanied by a large burst of entrainment. The above coalescence theory has 
been used to calculate that component of entrainment that is due to coalescence. Comparison 
of this and experimental data shows that the entrainment due to coalescence can be a significant 
portion of the total entrainment. 

I. I N T R O D U C T I O N  

Annular two phase flow is an important regime of two phase flow. It is characterised by a 
film of liquid on the surface of the pipe together with a fast flowing gas stream in the bulk 
of the pipe. Additionally there are droplets of liquid entrained in the gas stream. Here we 
shall be concerned with annular flow in the vertically upwards direction. 

An important phenomenon in annuhtr flow is the presence of waves on the surface of the 
liquid. These waves can be split up into two main groups: firstly, there are small, slow 
moving ripples which do not have a continuous life, and, secondly, there are disturbance 
waves which are faster and larger than the ripples, usually forming complete rings in the pipe 
and having a characteristically milky appearance. In this paper we shall only be concerned 
with the disturbance waves. 

By measuring the velocities of waves passing a given point in the pipe, and also the time 
separation of successive waves passing that point, probability density functions for the 
velocity and time separation of waves at that point can be built up. Hall Taylor et ai. (1963) 
have observed that disturbance waves tend to move with constant velocity and that ira faster 
wave overtakes a slower wave, then the two waves coalesce and usually continue with the 
speed of the faster wave. 

Here it is our intention under these two simple hypotheses to determine theroretically the 
variation of the probability density functions for velocity and time separation of the 
disturbance waves with distance along the pipe. Although this can be done, so that analytical 
expressions can be determined for the probability density functions, they are in general not 
computable. For this reason we also develop a Monte-Carlo method, essentially a numerical 
experiment, which moves waves according to our hypotheses and furnishes us with the 
probability density functions for different stations in the pipe. 

This problem has been discussed previously by Hall Taylor & Nedderman (1968) and by 
Azzopardi (1979). Under the same hypotheses, they used an approximate theory in which 
a wave could only be caught by the wave immediately behind it in order to find the variation 
of mean time separation and hence also frequency with distance along the pipe. Un- 
fortunately due to internal inconsistencies in their theory, namely that the frequency 
calculated as the reciprocal of the mean time separation is different from the frequency 
calculated as the initial frequency multiplied by the proportion of waves not overtaken, they 
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obtained results differing by a considerable amount from the results to be presented here. 
Hall Taylor et al. (1963) also observed that when two waves coalesced, the merging was 

accompanied by a sudden burst of entrainment. Using the additional simple hypotheses that 
in a coalescence all the volume of the slower wave is entrained, and that there is a simple 
relationship between the velocity and volume of  a wave, we can also predict either anal- 
ytically or through the Monte-Carlo method the expected amount of entrainment due to 
coalescence of disturbance waves at all distances along the pipe. The assumption that in a 
coalescence all of the slower wave is entrained can be justified as follows. Firstly, waves have 
been observed to travel at a velocity proportional to their height (see Azzopardi 1979 for 
collected evidence). Also the time-distance plots of Hall Taylor et al. (1963) show that when 
waves coalesce the remaining wave continues at its former speed. Any increase in its volume 
and therefore height would cause the velocity to be different to that before coalescence: 
therefore all the slower wave must have been entrained. 

In section 2, we describe the analytical determination of the probability density functions 
and of the entrainment due to coalescence, and in section 3 we repeat the process with the 
Monte-Carlo method. In section 4, we describe the results and the comparison with 
experimental measurements. Finally, in section 5 we present the conclusions and discuss 
possible extensions to the work. 

2. A N A L Y T I C  T t I E O R Y  

Our two major assumptions are that individual waves travel with constant velocity and 
that if a faster wave catches a slower wave, then the faster wave continues with the same 
vclocity but the slower wave is completely entrained. 

Given the initial probability density function p(v) for wave velocity and q(t) for time 
separation of waves, we shall proceed to determine theoretically these distributions for 
different stations along the pipe. 

We shall at all times consider a cut-off normal distribution for the initial wave velocity 
distribution, i.e. 

x /~o ( !  2¢r" J '  [2.1] 

Here C' and a are respectively the mean and standard deviation of the non cut-off normal 
distribution, and i fC /a  is large they will also very nearly be the mean and standard deviation 
of the actual distribution. We shall, however, discuss different distributions for the initial 
time separation of waves. 

The calculation of the probability distributions for velocity and time separation at 
distance z along the pipe is quite lengthy and so the details have been deferred to the 
appendices. Appendix A describes the theory for an arbitrary initial time separation 
distribution q(t), while appendices B and C describe the simplifications possible when q(t) 
is either a a-function or an exponential distribution. 

For a wave of speed v, we calculate the probability of being overtaken, PO(v, z), by 
distance z along the pipe and P(v, t, z), the probability that the time separation at .- with the 
following wave is greater than t. 

The probability distribution P(v, z) for wave velocities at station z is then given by 

e ( r ,  : )  = p ( v ) [ I  - l~O(r____:-)] 
f -- PO(v, dr, p(v)[I 2)]  

[2.2l 



WAVE C"OALJESC'ENCE AND E N T R A I ~  IN VI~TICAL ANNULAR TWO-PHA.~ FLOW 385 

and the frequency f ( : )  of waves at distance z along the pipe is given by 

f0 ~ 
f ( : )  =fo p(c)(i - PO(c, ,.')] dc [2.3] 

where f0 is the initial frequency of waves. 
Further the distribution of time separations is given by the following equation for P(t, z) 

the probability that the time separation with the next wave is greater than t: 

fo ':P(v)P(t" : )dv  t', 

e(t, -) = ,o [2.41 

f0 p(v)[I - eO(v, z)] dv 

To calculate the entrainment due to coalescence, we assume that when a wave is caught 
up it is instantaneously entrained. We also assume that the volume of a wave is directly 
proportional to the height of the wave squared, i.e. 

Volume=Ch(v): [2.5] 

and the height of a wave is determined from its velocity v through a linear relation 

h(e) = Av + B [2.61 

where the constants A, B and C depend only upon the bulk flow properties and are found 
from the data of Azzopardi (1979) and Azzopardi et al. (1979). 

The expected total entrainment ET('.) of liquid per unit circumference of pipe by 
distance .." is then given by 

ET(z) = fo fo "~ Cpp (v)[h (v)l'PO (v, z) dv [2.71 

where p is the density of the liquid and the entrainment rate E(-') is given by 

E(: ) = ~Er(:).z [2.8] 

3. NUMERICAL SIMULATION 

In the previous section, we obtained analytic expressions for the variation with distance 
along the pipe of the probability distributions of wave velocity and time separation for 
general initial distributions of time separation. However, except for the special cases of 
6-function or exponential distributions for the initial time separation, these analytic expres- 
sions include integrals of arbitrary orders and are thus not computable. For this reason we 
have developed a Monte-Carlo method to generate distributions of wave velocity and time 
separation for general initial distributions of time separation including especially the 
physically.interesting case of initial cut-off normal distribution of time separation. 

The Monte-Carlo method is,  broadly speaking, the numerical analogue of an actual 
experiment. The initial distributions of velocity and time separation are calculated from a 
random number generator and the arrival of the waves is monitored at a number of 
downstream points. At each observation point the order of arrival of waves is monitored 
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and any wave which arrives after a wave that started behind it must have coalesced and is 
disregarded. New distributions of velocity and time separation are formed with the waves 
that survive. The whole process is thus reduced to one of sorting. 

Preliminary calculations were done with a ,5-function distribution of time separations 
and a cut-off normal distribution of velocity. The normally distributed random numbers 
were generated by the Harwell Subroutine Library program FA03A. These results were in 
good agreement with the analysis of the previous section. 

Further calculations were carried out for the physically interesting case of cut-off 
normal distributions of both the time separation and the velocity. These results are given 
in the next section. 

The method is extremly flexible (and also quite cheap). Almost any probability 
distribution can be specified quite easily and used for either the time separation or velocity 
distributions. Moreover it should be possible to incorporate slight modifications to the 
model such as wave repulsion, non-constant wave velocities, or wave coalescence if the 
separation is less than some tolerance. The most obvious disadvantages are two-fold. 
Firstly, the coalescence is a discrete phenomenon so an extremely large number of waves 
is required to give an accurate estimate of the entrainment which occurs in very short 
distances. (One also needs large numbers to ensure that a reasonable quantity of waves 
reach distant observation points.) The second difficulty is deciding when a sufficiently large 
number of waves have been monitored to give reliable results. It is sometimes possible, 
with Monte-Carlo methods, to give confidence intervals on the results but the problem 
proved too difficult for the present work. Instead the runs were repeated with increasing 
numbers of waves until a doubling of the number of waves gave rise to less than I percent 
change in frequency. 

The Monte-Carlo method has been quite effective in simulating this preliminary work. 
It seems likely that similar techniques can be extended to study more complicated models, 
although one anticipates increases in complexity leading to rapidly increasing running 
COSTS. 

4. R E S U L T S  A N D  C O M P A R I S O N  WITII  E X P E R I M E N T  

The analytical theories described in section 2 and the Monte-Carlo method described 
in section 3 can all describe the evolution of the distributed wave velocities and time 
separations from given initial distributions. However the initial distributions are not 
presently available. Therefore we are constrained to assuming initial distributions and 
comparing the results predicted along the tube with available experimental data. As was 
stated earlier, the velocity distribution was assumed to be normal. This assumption is 
consistent with the experimental results of Hall Taylor & Nedderman (1968). These 
workers also found that the standard deviation of wave velocities appeared to be almost 
independent of both gas and liquid flow rates. Therefore for any particular example only 
the initial mean wave velocity need be specified. 

Less information is available concerning the initial distribution of time separations of 
waves. The mean initial time separation is the reciprocal of the mean initial frequency and 
reasonable estimates can be made for this. We only use `5-function, exponential and cut-off 
normal distributions here and the first two of these are completely specified by the mean. 
For the cut-off normal distribution the standard deviation is also required. As the standard 
deviation increases from zero to the mean value, the cut-off normal distributions varies 
between the `5-function and exponential distributions. To obtain a distribution si'gnificantly 
different from thcse two limits we have therefore used a standard deviation of 0.4 times 
the mean for the cut-off normal distribution. 

An example of the variation of mean frequency along the tube is shown in figure !. 
The conditions selected are gas mass flux = 79.4 kg/m:s and liquid mass flux = 79.4 kg/m's. 
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Figure 1. Variation of wave frequency with distance. 

Figure I also shows experimental values taken from Azzopardi et al. (1979). As can be 
seen the agreement is quite reasonable. The ratio of mean frequency at any position along 
the tube to the initial frequency can be shown to be a strong function of the groupf0z/C 2, 
where ~' is the mean initial wave velocity, and only a weak function off0 and ~' separately. 
Figure 2 shows some of the data of Azzopardi et al. (1979) plotted a s f o / f ( : )  - 1 vsf0z/~? z, 
also shown are the predictions of the above theories. The agreement is again quite 
reasonable--some of the scatter can be attributed to experimental uncertainty. 

Brown (1978) has measured the variation of mean wave velocities along the tube. His 
results for gas mass flux of 79.4 kg/m2s and liquid mass flux of 79.4 kg/m's are compared 
with the predictions of theories in figure 3. Initial mean and standard deviation of wave 
velocities of 3.0 and 0.15 m/s and an initial mean frequency of 40 Hz were assumed. The 
predictions can be seen to be very close to the experimental values, the difference being 
comparable to the experimental scatter. 

Figure 4 shows a comparison between theoretical and measured wave velocity 
distributions. The measured values were taken from Hall Taylor & Nedderman (1968), The 
theoretical distribution curve is taken from a case with an initial 6-function d:stnbutlon 
of time separations of mean 0.025 s. The normal initial wave distribution had a mean of 
3.4 m/s and a standard deviation of 0.15 m/s. The theoretical distribution was calculated 
for z of 3 m whereas the experimental results were determined from an inspection of 
distance/time plots for waves between I and 6 m from the inlet• The agreement is again 
most reasonable with the skewness evident in the experimental values being well 
reproduced by the theory. 

Time separation distribution data has been abstracted fr6m film thickness traces taken 
by Azzopardi et al. (1979). These values are given in figure 5 together with the theoretical 
curve for an initial ~-function distribution of time separations. The mean of the 6-function 
was 0.1 s and the normal initial velocity distribution had mean and standard deviation of 
2•25 and 0•15 m/s respectively. Here the theory is in less good agreement with the 
experimental data than for the previous figures. Experimentally very few waves are 
observed close together which could be explained by the fact that if waves are close 
together they overlap or by the fact that waves accelerate when close behind another wave. 
It would, however, be inconsistent for the theory to predict few small time separations as 
the amount of coalescence at any time is directly proportional to the number of waves with 
zero time separation. 
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The evolution of the velocity and time separation distributions predicted by the theory 
are shown in figures 6 and 7 respectively. Both figures refer to the same flow rates and 
are for an inital 6-function distribution of time separations of mean 0.025 s and an initial 
normal velocity distribution of mean and standard deviation of 3.4 and 0.15m/s 
respectively. Other shapes of initial time separation give very similar development for both 
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Figure 4. Probability distribution of wave velocities. 
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velocity and time separation distributions. This latter fact is surprising, the exponential 
distribution stays exponential whereas the 6-function and normal distribution evolve to 
exponential form. 

Thus apart from the large fraction of small time separations predicted by the theories 
and not observed in experiments the theories are very good at showing the bchaviour of 
wave frequencies and velocities along the tube. The theories therefore will be used to 
examine the split in the entrainment rate between that due to coalescence and that present 
even at equilibrium. The results of the calculations of that portion of entrainment due to 
coalescence are shown in figure 8. Curves are given for the analytical theory starting from 
both a 6-function and an exponential distribution and for the Monte Carlo analysis 
starting from a cut off normal distribution. This part of the analysis also uses the following 
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Figure 7. Variation with distance of time separation distribution. 

re lat ionships:  

= 22nh (v)2 [4. I ] 

h(r) = q /~  IO-'(v - I). [4.2] 

The former is taken from the volume per wave data of Azzopardi et al. (1979) and the 
wave height data of Hewitt & Nicholls (1969). The latter is fitted to the data of Hewitt 
and Nicholls as replotted by Azzopardi (1979). The initial wave frequency used was 40 Hz, 
the initial velocity distribution was characterised by a mean of 3.4 m/s and a standard 
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deviation of 0.15 m/s. Values of total entrainment rates have been deduced from a mass 
balance on the entrained liquid 

dGLr = d dr. (E - D) [4.3] 

where GLE is the entrained liquid mass flux, E is the entrainment rate and D is deposition 
rate. It is further assumed that 

D = kGLe 
Ga [4.4] 

where k is the mass transfer coefficient and Ga is the gas mass flux. Combining [4.3] and 
[4.4] gives an expression for the entrainment rate in terms of the entrained liquid mass flux 
and its gradient. The data of Azzopardi et al. (1980) for entrained liquid mass flux at 
different positions along the tube was used to determine the entrainment rate. 

The GL~(2 ) data was fitted with a simple function and then the function was 
differentiated. The resulting entrainment data is shown in figure 8. The results here show 
that the coalescence due to entrainment is a significant portion of the total entrainment 
is some parts of the tube irrespective of which initial distribution is considered. Hall Taylor 
(1966) suggested that the entrainment rate could be described by 

E = a f - b ~ z  [4.51 

where the second term describes the entrainment due to coalescence and the first term 
refers to background entrainment which we can expect to be proportional to the number of 
waves present. The three curves shown in figure 8 have been used to derive values for the 
second term in [4.5] above, experimental results were used for E. Values of the constant 
a were then sought. In all three cases a was found to vary with distance along the tube. 

This item is the subject of further work. 
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5. CONCLUSIONS 

From the work presented above it is possible to draw the following conclusions: 
(!) A rigorous theory for the coalescence of waves in annular two phase flow has been 

derived. This allows for the coalescence of neighbouring waves and for the coalescence of 
the resulting wave with its neighbours. The results of the theory give reasonable agreement 
with available data. 

(2) The theory can be extended to give that portion of entrainment due to coalescence. 
The calculations show that at some points in the tube the extrainment due to coalescence 
is a significant portion of the total entrainment. However, the remaining entrainment has 
not been found to be proportional to the local wave frequency. 

One drawback of the current analysis is that the initial distribution of time separations 
and the initial distribution of wave velocities must be supplied. A possibility for future 
work is to determine these distributions from time distance plots taken from side view cine 
films. Further work on distinguishing the coalescence and background entrainment is also 
required. It might be possible to do this by creating single artificial waves using the 
technique of Azzopardi & Whalley (1980) at various frequencies and noting the effect of 
distance and frequency. 

a 

b 
C 
D 

E(:) 
ET(z) 

f (:)  
L 

Gt.~. 

h(v) 
k 

p(v) 
PO(v,z) 
P(v, t, z) 

P ( t ,  z) 

q(t) 
t 

p 
a 

NOMENCLATURE 

constant in [4.5], (kg/m') 
constant in [4.5], (kg/m) 
mean wave velocity, m/s 
deposition rate, kg/m's 
entrainment rate, kg/m2s 
total entrained fluid, kg/ms 
frequency, s - 
initial frequency, s-t  
entrained liquid mass flux, kg/m-'s 
wave height, m 
deposition coefficient, m/s 
initial wave velocity density function, s/m 
probability of wave of speed v having been overtaken by distance z 
probability that time separation between wave of speed v and the following wave 

at distance z along the pipe is greater than t 
probability that time separation between any two waves at distance z along the 

pipe is greater than t 
initial time separation distribution, s-a 
time separation, s 
wave velocity, m/s 
distance along pipe, m 
fluid density, kg/m ~ 
standard deviation of initial velocity distribution, m/s 
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A P P E N D I X  A 

For a wave of speed v. the probability PO(v, ~) of having been overtaken at a distance 
." along the pipe is given by 

PO(v, z) = ~ PO,(v, :). 
n-- I  

Here PO,(v, z) is the probability of having been overtaken by the wave behind: PO2(v, : )  
is the probability of having been overtaken by the wave 2 behind but not by the wave 
immediately behind: PO~ is the probability of having been overtaken by the wave 3 behind 
but not by the two waves immediately behind, and so on. 

The wave of speed v is overtaken by the wave behind if its speed V t is such that 

q 

- > Z  I v +V, 

where ~j is the initial time separation of the two waves. The probability of having been 
overtaken by the wave behind is thus given by 

PO,(v. : )  = q(zl dr, 

where g(x) is defined by 

g(x) = f ,  ~ p(v) dr. 

The wave of speed v is overtaken by the wave 2 behind but not by the wave immediately 
behind if their velocities 1"2 and V~ respectively satisfy 

2 7. 
- > r t + ~ z +  m 
o z2 

and 

z 
- < Zl - t - - - -  
v V; 
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where tt, 32 are the initial time separations between the first and second, and second and 
third waves respectively. The probability PO2(e, z) of  having been overtaken by the wave 2 
behind but not the wave immediately behind is thus given by 

POz(v, z )  = q(~t)q(~2)g Z - vrt - t'~: " 

PO3(v, z)  can also be obtained in a similar way and is given by 

POd(v, z)  = q(zt)q(~2)q(~3)g "z - VTI --V~2 -- V% 
JO JO 

• 7./) 

POrt(v, z)  for higher values of  n are also calculable and are nth order integrals. 
The probability distribution of  velocities a distance z along the pipe is then given by 

P(v, z) = 
p(v)[I - PO(v,z)] 

f0 p (v)[ 1 - PO (v, z)] do 

Further the mean frequency f ( z )  can immediately be derived to be 

f ( z )  =f0 p(v)[! - PO(v, z)] dv 

where f0 is the initial mean frequency given by 

(f: ) f0 = rq(~) dr . 

We can also proceed to calculate the probability density function of  time separation 
at distance z along the pipe. This is found in a similar way to the probability of  having 
been overtaken. Let Q(t,  v, z)  be the probability that the time separation of  a wave of  speed 
v and the following wave is less than t at a distance z along the pipe. Then Q(t, v, z)  is 
given by 

Q(t,v,z)= ~ Q.(t,v,z) 
nml 

where Q,(t, v , z )  is the probability that the time separation with the wave immediately 
behind initially is less than t, Q2(I, v, z) is the probability that the time separation with the 
wave initially behind is greater than t, but the time separation with the wave initially 2 
behind is less than t, but the time separation with the wave initially 2 behind is less than 
t, etc. 

The time separation with the wave immediately behind initially is less than t if its speed 
V, is such that 

Z 
- h - t  > ~ l q - - -  
t~ V I 
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where Tt is again the initial time separation of the two waves. The probability that the time 
separation is less than t is thus 

ii [ Q,(t, v, : )  = q(zl)g z + ~ -  w ,  

Similarly we can calculate Q2(t, v, z )  to be 

Qe(t, v, z )  = q(zt)q(zz)g - -  
do do q- vt -- w t -- v~2 

Also Q.(t, v, z )  for n greater than 2 can be calculated to be nth order integrals. 
On renormalisation to account for waves that have been overtaken and thus disap- 

peared, it follows that the overall probability that the time separation at a distance z along 
the pipe is greater than t is givem by 

I/ I - p ( v ) Q ( t , v , z ) d v  

P(t ,  7,) 
I = p(v)[I - e O ( v ,  z)] dv 
J0 

A P P E N D I X  B 

In the special case when the probability density function of time separations is a delta 
function, that is waves are emitted at constant time intervals %, the analysis can be simplified 
as follows. 

As the initial positions of the waves are now independent, the probability PNO(v ,  z )  of 
a wave of speed v not having been overtaken at distance z along the pipe is the product of 
the probabilities of not having been overtaken by the individual waves, i.e. 

PNO(v ,  z) = f i  PNO~(v, z). 
n - I  

The wave is not overtaken by the wave n behind if its speed V. is such that 

z Z 
- < n r 0 + . - : -  . .  
v V, 

Hence PNO.(v ,  z )  is given by 

I z1) 1 z PNO.(v,  : )  = P V. < if v < - -  
Z --  nT0v ?1~" 0 

z 
= i  i fv  >~-- .  

nT 0 

The probability density function of velocities at distance z down the pipe is then given 
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by 

p ( r ; - )  = 
p(v)PNO(v, z) 

f f~ p(v )PNO (v, : )  dr 

and the mean frequency f ( : )  of waves at distance z along the pipe is 

f( . ' )  = 

f ~ p(v )PNO(v, : )  dv 

To 

To obtain the probability distribution of  time separations at distance z along the pipe 
we note that for a wave of velocity v, the probability P(t, c, z) that the time separation with 
all waves behind is greater than t is the product of the probabilities of time separation with 
individual waves behind is greater than t, i.e. 

P(t,v,z)= fi P~(t,v,:). 
n - I  

The time separation with the wave n behind is greater than t if its speed V, is such that 

z z 
- + t < nZo +-:7-..  
u v~ 

Thus 

e,(t, v, z) = PIV. < ,] z zv if t > nTo - - 
z + v ( ~ - -  nTo v 

z 
= I i f t  -..< nTo- -. 

/) 

The overall probability that the time separation at a distance z along the pipe is greater 
than t is then given by 

~f p(v)P(t,v,:)dv 

P(t'z)=f~ p(v)PNO(v,z)dv 

A P P E N D I X  C 

For the special case in which the initial probability density function of time separation 
is an exponential function the analysis of Appendix A is appreciably simplified. 

We have the probability density functionf(T) given by 

f ( r )  = ~o exp - 

where fo is the initial mean time separation. 
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In this case we have 

e O , ( v ,  : )  = % ~o/L: - v T , j  

~f0f:"- ( ~E ][ E~] ]  
: / r  tl  q T I dr- T 2 21.' 21,' 

PO_,(v, : )  = exp . 1 - g dzz dtt 
"C~ -~0 2 - -  U T  I - -  t 'T 2 

which on changing of the dummy variables in the integral can be written as 

I p,,, / lfi- [~ 1] e o : ( v , : ) = ~ j 0  e x p / -  to/ l z - v s j J o L  

Similarly PO3(v, =) can be written as 

. .  < ~ [  =v ]/ofo[ [=v ]] eo:(v,=)=~jo exp,,- ~ l-g 

If we now observe that 
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.. u _ g 2V [ ' 2~ 2 I, I, [, [~]][,-,[~;l ~, ~--~(I0 [,-,[~]]0,) 
and similarly for the higher order integrals in PO,(v. z). it follows that PO(v. z) defined 
by 

PO(v. : )  = ~. PO,(v, : )  
n - I  

'--.. < _-,~,r =~ loxo('I/[,-,E~]]~,)~, = ToJ,; 'exp[,- ~o/ L: - ~ ' J  

and this can be simplified to 

I :1; ~o~,..:,.,_o,o(_~olo , [~]~,).  
The equations for the probability distribution of velocities and for mean frequency can 

be respectively written as 

,(,,,ox~(-_-' f:"~r =vl ) dr 
3oJo L : - V ~ J  z 

'~':'=/: ('f0" [ ~ ]  ) p(v)exp -~o g dr dv 
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and 
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f "  Jo L :  - ~,'r_l 

Further the analysis leading to the probaility distribution of time separation also can 
be simplified. Using a similar analysis to the above, it is found that 

Q(t,r,:)=l-e×p - ~ j o  k: + r t - r r  

and hence 


